
Proposal to NLNet: O’Search - Offline Search

Sean Levy

14-JUL-2015

Offline Search

The most private search is the one that never hits the wire: what if you could plug cheap,
external storage (say, a USB stick) into your device of choice and search a credible, usable
catalog of the web without a packet ever being sent or received? No logs for TLAs to pick
over post-hoc, no censorship to deal with other than the explicit editorial policy used to
build the catalog.
The overall vision in the medium term is to produce a catalog of the web that fits in

something like 1TB and could be carried around (eventually on a USB stick), shared via
Sneaker-Net and dead drops for those without 1st world connectivity and spread via Bit-
Torrent by those who do. The catalog would have to be updated regularly; cranking out
a new version every 30 days would be a reasonable goal to start with, the idea being that
the number of days could be reduced if more resources were available. The canonical users
would be journalists and activists, rural people and others with limited or no connectivity,
privacy advocates and communities who wish to have their own view of the web for whatever
reasons (religious, cultural, political).
Some of these prospective user communities might be interested in cooking their own

catalogs, for whatever reason. A twin goal, therefore, is to release the software used to build
the catalog under the ISC license1 (a simplified version of the BSD license2 favored by some
projects such as OpenBSD3). The software is designed so that groups who are interested in
producing catalogs can collaborate so long as they agree on certain basic parameters. The
more the merrier: let a thousand flowers bloom. If you have the resources to crawl the web
you can run the whole stack yourself. If you don’t want to do the crawling but are interested
in tweaking a catalog in some other way you can subscribe to another group’s crawl and
build your own catalog. There are good reasons why you’d want to do both of those things.
Of course, subscribing to someone else’s crawl presumes that you already agree with enough
of that crawl’s parameters. For instance, a group of religious fundamentalists who wanted
to make a catalog that does not contain any material antagonistic to their beliefs would
probably not want to subscribe to a crawl produced by a group of hacktivists.
The software will be as minimal as possible, creating anew only what is missing from the

open-source world. I have identified several major components of what is necessary and
think I have a fairly good handle on what is missing for such a system and what the path
forward looks like to the first catalog release.
The catalog will come with a reference implementation of a search tool, command-line

only to start with, written in Python, Perl or some other language something that could be
1https://en.wikipedia.org/wiki/ISC_license
2https://en.wikipedia.org/wiki/BSD_license
3http://www.openbsd.org

1

https://en.wikipedia.org/wiki/ISC_license
https://en.wikipedia.org/wiki/BSD_license
http://www.openbsd.org
https://en.wikipedia.org/wiki/ISC_license
https://en.wikipedia.org/wiki/BSD_license
http://www.openbsd.org

packaged up in a universally consumable way. More complex, user-friendly tools to make
use of the catalog could be written by anyone. I intend to use Xapian4 for the indexing
back end, and the files we would distribute would be in the format that the Xapian client
libraries expect. This means any programming language with Xapian bindings could be
used to build search tools. Xapian’s architecture allows for custom back-ends to be built; if
it becomes necessary in order to reduce the size of the catalog we can do whatever we need
to do without sacrificing the rest of Xapian’s features, such as its extensible query language.

Editorial Policies for Catalogs

The specific choice of 1TB is arbitrary: it’s a previously unimaginable amount of storage
which will shortly become commonplace. The terabyte is the new gigabyte, just like always.
The actual size is more or less irrelevant because I’m talking about editing (a catalog of)
the web to make it more manageable, so fundamentally the idea is to trade time for space.
There hasn’t been too much attention paid to the idea of minimizing space in the search
and indexing world - mostly everyone wants to minimize time and is willing to trade space
for time, especially given how cheap storage has become relative to other resources.
Our paradigm is different: we instead wish to put an upper bound on the size of the catalog

and will trade both run-time (both in the catalog build and in the end user experience) when
possible to shrink it. This decision colors everything else in many ways.
Whatever the specific maximum size ends up being, it is still obvious that something will

have to be left out of The Whole Enchilada. If we are to believe pundits the web’s ever-
expanding hugeness will continue on an exponential arc until the heat death of the universe.
Although it is true that the total size of the web in several dimensions continues to grow, it
is not true that everyone wants to search all of it all of the time.
As a straw-man I propose the following editorial policy for a catalog of the web that might

fit in 1TB:
Drop the following:

1. Porn;

2. Social Media (Anything on Facebook, LinkedIn, G+, . . .);

3. Content in anything but a single language (in this case English);

4. SEO Garbage (pages that only exist to game PageRank).

It might be that some prospective user communities won’t agree with my assessment, not
just of Facebook, but in general: if you’re a journalist researching a piece on porn then you
do in fact want to find porn (not to be overly puritanical). This means that at least the
catalog I would like to produce use will not necessarily be suitable for everyone. This is why
the editorial machinery used to drop things from the catalog is not fixed: in fact this is the
most important piece of the puzzle that does not yet exist.
Nonetheless my short kill file5-style policy is just a sketch: without some numbers I don’t

really know if the goal of 1TB is achievable this way. This is why I propose to first do a
pre-catalog survey of the web in order to produce numbers that can be used to do what-if
analyses like:

4http://xapian.org
5https://en.wikipedia.org/wiki/Kill_file

2

http://xapian.org
https://en.wikipedia.org/wiki/Kill_file
http://xapian.org
https://en.wikipedia.org/wiki/Kill_file

• How big is porn in its various dimensions (urls, bytes, stems)?

• What is the effect on the final size of the Xapian files if we drop it?

Answering the latter question requires a little modeling and experimentation but the
idea should be clear: there might be very “large” areas of the web that don’t contribute
proportionally to the size of the index. I should have enough resources with the hardware
available to me to store meta-data about enough of the web to make this possible. . . nothing
like enough space to actually store the whole web, of course, but enough to make reasonable
estimates about size as it impacts the catalog.
Once the survey is done the next step would be to come up with a final size constraint

that is sensible given (a) the state of portable media at the time and (b) what we’ve learned
from the survey.
In doing the survey it is certain that issues will arise that will require code to be written,

design assumptions to be revisited, etc. For this reason I think it only makes sense to think
about the architecture in general terms and not get too specific too early. My overall vision
for the catalog builder is analogous to a snake that eats its own tail; intermediate results
and content from the web can only be partially cached due to size constraints, so estimating
the high watermark for temporary storage during a build is crucial. This is as opposed
to a system such as Google’s, which is more like a large herd of goats romping around in
an effectively infinite field, a.k.a. their cache of the web. We can improve performance by
running multiple ouroboros instances but Google’s herd of goats is always going to win on
speed.

Search Interfaces and Caching

Our overriding concern is privacy; the specific catalog we wish to produce is one geared
towards activists, journalists and others on the front line of the war against privacy being
waged by the largest, most aggressive governments on the planet. To this end we also wish
to explore a few other ideas in the user interface. Although this is a secondary area we will
be providing a reference tool with the catalog that can be used by itself to search, and which
provides us with a platform to experiment with privacy-related features in this context.
Users of most online search engines have gotten used to a slew of features that can

easily violate their privacy or otherwise leak information about them. Search results pages
frequently contain bugs of many kinds; they also include summaries and extracts from web
pages that appear in them, etc. Our catalogs, being limited in space, will surely not contain
enough information by themselves to mimic these features without code to reach out and
pre-fetch results to produce these kinds of summaries, snapshots, etc.
Any instance of our catalog will also have an associated cache, which will normally ship

as an empty folder. As a user interacts with the catalog, subject to user preferences, this
cache could accrue up-to-date summary information on results as they come out of searches,
so that over time more user-friendly results could be displayed if cached information were
available or if the user agreed to allow on-the-fly network access from the tool being used
to search the catalog.
We propose that the reference client have three modes:

1. Catalog only: only information that appears in the catalog is displayed, which will
result in fairly minimalist information for search hits. The cache is ignored in this
mode, no summaries or snapshots are available;

3

2. Catalog + Cache: information in the cache that is not deemed too old (user set-
table) will be merged into search results, so that some hits might have more elaborate
summaries, images, etc. available;

3. Full Cache: the cache is filled on the fly for all search hits that are displayed. Cache
entries that are too old are refreshed.

In the first two modes no network traffic is generated by searching; only in the last mode
will information about what the user is searching for leak onto the wire.
A journalist who was preparing to go into a war-torn area where getting online is to be

avoided if possible could use the Full Cache mode to pre-load their cache over Tor by running
a set of queries that loads the cache with summaries and snapshots for all search hits, before
they go. They could then use their catalog with its associated cache to see reasonably rich
results (assuming the cache covered them), and which allowed them to avoid using the
network as much as possible while in inclement circumstances.

Proposal

This is an ambitious project on the whole but a substantial portion of it is doable in a single
year by a motivated, qualified hacker with appropriate support, especially given some of
the excellent open-source software that already exists that can be brought to bear on the
problem. I am asking for USD$30k to support my work for a year, during which I will build
enough of the system to complete the initial survey of the web, come up with a target size
and produce the first catalog and associated software. It may be that all of the features of
the reference search tool are not implemented and that the editorial policy machinery does
not support everything necessary for every potential user to build the catalog they desire
in this time-frame. Some effort must also be spent on building a community of interested
developers and early users, as well as feeding back relevant developments and fixes to open-
source projects we use. Sites like GitHub are ideal for this and also serve as a dissemination
mechanism.
In addition to the money I am also looking for other kinds of support that an organization

like NLnet might be uniquely suited to provide. One resource that this effort obviously
requires is bandwidth for spidering the web. NLnet might be able to connect this project
with entities that would be interested in donating bandwidth and other resources to a project
such as this, for instance.

4

